Turán-Type Results for Distance Graphs in an Infinitesimal Plane Layer


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we obtain a lower bound on the number of edges in a unit distance graph Γ in an infinitesimal plane layer 2 × [0, ε]d, which relates the number of edges e(Γ), the number of vertices ν(Γ), and the independence number α(Γ). Our bound \( e\left(\varGamma \right)\ge \frac{19\nu \left(\varGamma \right)-50\alpha \left(\varGamma \right)}{3} \) is a generalization of a previous bound for distance graphs in the plane and a strong improvement of Turán’s bound in the case where \( \frac{1}{5}\le \frac{\alpha \left(\varGamma \right)}{v\left(\varGamma \right)}\le \frac{2}{7} \).

作者简介

L. Shabanov

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: shabanovlev94@gmail.com
俄罗斯联邦, Dolgoprudny

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018