Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time
- 作者: Ponomarenko I.1, Vasil’ev A.2
-
隶属关系:
- St.Petersburg Department of the Steklov Mathematical Institute
- Sobolev Institute of Mathematics, Novosibirsk State University
- 期: 卷 234, 编号 2 (2018)
- 页面: 219-236
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241818
- DOI: https://doi.org/10.1007/s10958-018-3998-3
- ID: 241818
如何引用文章
详细
A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).
作者简介
I. Ponomarenko
St.Petersburg Department of the Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: inp@pdmi.ras.ru
俄罗斯联邦, St.Petersburg
A. Vasil’ev
Sobolev Institute of Mathematics, Novosibirsk State University
Email: inp@pdmi.ras.ru
俄罗斯联邦, Novosibirsk
补充文件
