Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).

作者简介

I. Ponomarenko

St.Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: inp@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

A. Vasil’ev

Sobolev Institute of Mathematics, Novosibirsk State University

Email: inp@pdmi.ras.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018