Bounds on the Dynamic Chromatic Number of a Graph in Terms of its Chromatic Number


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A vertex coloring of a graph is called dynamic if the neighborhood of any vertex of degree at least 2 contains at least two vertices of distinct colors. Similarly to the chromatic number χ(G) of a graph G, one can define its dynamic number χd(G) (the minimum number of colors in a dynamic coloring) and dynamic chromatic number χ2(G) (the minimum number of colors in a proper dynamic coloring). We prove that χ2(G) ≤ χ(G) · χd(G) and construct an infinite series of graphs for which this bound on χ2(G) is tight.

For a graph G, set \( k=\left\lceil \frac{2\Delta (G)}{\delta (G)}\right\rceil \) We prove that χ2(G) ≤ (k+1)c. Moreover, in the case where k ≥ 3 and Δ(G) ≥ 3, we prove the stronger bound χ2(G) ≤ kc.

作者简介

N. Vlasova

St. Petersburg State University

编辑信件的主要联系方式.
Email: evropa2100@mail.ru
俄罗斯联邦, St. Petersburg

D. Karpov

St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University

Email: evropa2100@mail.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018