Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane
- 作者: Trofymenko O.D.1
-
隶属关系:
- Vasyl’ Stus Donetsk National University
- 期: 卷 229, 编号 1 (2018)
- 页面: 96-107
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240377
- DOI: https://doi.org/10.1007/s10958-018-3664-9
- ID: 240377
如何引用文章
详细
In terms of the Bessel functions, we characterize smooth solutions of some convolution equations in the complex plane and prove a two-radius theorem for solutions of homogeneous linear elliptic equations with constant coefficients whose left-hand sides are representable in the form of a product of some non-negative integer powers of the complex differentiation operators ∂ and \( \overline{\partial} \).
作者简介
Olga Trofymenko
Vasyl’ Stus Donetsk National University
编辑信件的主要联系方式.
Email: odtrofimenko@gmail.com
乌克兰, Vinnytsia
补充文件
