An operator approach to the indefinite Stieltjes moment problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A function f meromorphic on ℂ\ℝ is said to be in the generalized Nevanlinna class Nκ (κ ϵ ℤ+), if f is symmetric with respect to ℝ and the kernel \( {\mathbf{N}}_{\omega }(z)\coloneq \frac{f(z)-\overline{f\left(\omega \right)}}{z-\overline{\omega}} \) has κ negative squares on ℂ+. The generalized Stieltjes class \( {\mathbf{N}}_{\kappa}^k\left(\kappa, k\in {\mathrm{\mathbb{Z}}}_{+}\right) \) is defined as the set of functions f ϵ Nκ such that z f ϵ Nk. The full indefinite Stieltjes moment problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) consists in the following: Given κ, k ϵ ℤ+, and a sequence \( \mathbf{s}={\left\{{s}_i\right\}}_{i=0}^{\infty } \) of real numbers, to describe the set of functions \( f\in {\mathbf{N}}_{\kappa}^k \), which satisfy the asymptotic expansion

\( f(z)=-\frac{s_0}{z}-\cdots -\frac{s_2n}{z^{2n+1}}+o\left(\frac{1}{z^{2n+1}}\right)\kern1em \left(z=-y\in {\mathrm{\mathbb{R}}}_{-},y\uparrow \infty \right) \)

for all n big enough. In the present paper, we will solve the indefinite Stieltjes moment problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) within the M. G. Krein theory of u-resolvent matrices applied to a Pontryagin space symmetric operator A[0;N] generated by \( {\mathfrak{J}}_{\left[0;N\right]} \). The u-resolvent matrices of the operator A[0;N] are calculated in terms of generalized Stieltjes polynomials, by using the boundary triple’s technique. Some criteria for the problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) to be solvable and indeterminate are found. Explicit formulae for Padé approximants for the generalized Stieltjes fraction in terms of generalized Stieltjes polynomials are also presented.

作者简介

Vladimir Derkach

Dragomanov National Pedagogical University; Donetsk National University

编辑信件的主要联系方式.
Email: derkach.v@gmail.com
乌克兰, Kyiv; Vinnytsya

Ivan Kovalyov

Dragomanov National Pedagogical University

Email: derkach.v@gmail.com
乌克兰, Kyiv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017