Reduction and Integrability of Stochastic Dynamical Systems
- 作者: Zung N.T.1, Thien N.T.1
-
隶属关系:
- Institut de Mathématiques de Toulouse, UMR5219
- 期: 卷 225, 编号 4 (2017)
- 页面: 681-706
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239796
- DOI: https://doi.org/10.1007/s10958-017-3486-1
- ID: 239796
如何引用文章
详细
This paper is devoted to the study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction, and integrability. In particular, we show that an SDS that is diffusion-wise symmetric with respect to a proper Lie group action can be diffusion-wise reduced to an SDS on the quotient space. We also show necessary and sufficient conditions for an SDS to be projectable via a surjective map. We then introduce the notion of integrability of SDS’s, and extend the results on the existence and structure-preserving property of Liouville torus actions from the classical case to the case of integrable SDS’s. We also show how integrable SDS’s are related to compatible families of integrable Riemannian metrics on manifolds.
作者简介
Nguyen Zung
Institut de Mathématiques de Toulouse, UMR5219
编辑信件的主要联系方式.
Email: tienzung.nguyen@math.univ-toulouse.fr
法国, Université Toulouse 3, Toulouse
Nguyen Thien
Institut de Mathématiques de Toulouse, UMR5219
Email: tienzung.nguyen@math.univ-toulouse.fr
法国, Université Toulouse 3, Toulouse
补充文件
