Reduction and Integrability of Stochastic Dynamical Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper is devoted to the study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction, and integrability. In particular, we show that an SDS that is diffusion-wise symmetric with respect to a proper Lie group action can be diffusion-wise reduced to an SDS on the quotient space. We also show necessary and sufficient conditions for an SDS to be projectable via a surjective map. We then introduce the notion of integrability of SDS’s, and extend the results on the existence and structure-preserving property of Liouville torus actions from the classical case to the case of integrable SDS’s. We also show how integrable SDS’s are related to compatible families of integrable Riemannian metrics on manifolds.

作者简介

Nguyen Zung

Institut de Mathématiques de Toulouse, UMR5219

编辑信件的主要联系方式.
Email: tienzung.nguyen@math.univ-toulouse.fr
法国, Université Toulouse 3, Toulouse

Nguyen Thien

Institut de Mathématiques de Toulouse, UMR5219

Email: tienzung.nguyen@math.univ-toulouse.fr
法国, Université Toulouse 3, Toulouse

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017