Commutative Nilpotent Subalgebras with Nilpotency Index n-1 in the Algebra of Matrices of Order n


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper establishes the existence of an element with nilpotency index n − 1 in an arbitrary nilpotent commutative subalgebra with nilpotency index n−1 in the algebra of upper niltriangular matrices Nn(????) over a field ???? with at least n elements for all n ≥ 5, and also, as a corollary, in the full matrix algebra Mn(????). The result implies an improvement with respect to the base field of known classification theorems due to D. A. Suprunenko, R. I. Tyshkevich, and I. A. Pavlov for algebras of the class considered.

作者简介

O. Markova

M. V. Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: ov_markova@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017