Commutative Nilpotent Subalgebras with Nilpotency Index n-1 in the Algebra of Matrices of Order n
- 作者: Markova O.V.1
-
隶属关系:
- M. V. Lomonosov Moscow State University
- 期: 卷 224, 编号 6 (2017)
- 页面: 956-970
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239729
- DOI: https://doi.org/10.1007/s10958-017-3465-6
- ID: 239729
如何引用文章
详细
The paper establishes the existence of an element with nilpotency index n − 1 in an arbitrary nilpotent commutative subalgebra with nilpotency index n−1 in the algebra of upper niltriangular matrices Nn(????) over a field ???? with at least n elements for all n ≥ 5, and also, as a corollary, in the full matrix algebra Mn(????). The result implies an improvement with respect to the base field of known classification theorems due to D. A. Suprunenko, R. I. Tyshkevich, and I. A. Pavlov for algebras of the class considered.
作者简介
O. Markova
M. V. Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: ov_markova@mail.ru
俄罗斯联邦, Moscow
补充文件
