On the Lattice of Subvarieties of the Wreath Product of the Variety of Semilattices and the Variety of Semigroups with Zero Multiplication


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that the monoid wreath product of any two semigroup varieties that are atoms in the lattice of all semigroup varieties may have a finite as well as an infinite lattice of subvarieties. If this lattice is finite, then as a rule it has at most eleven elements. This was proved in a paper of the author in 2007. The exclusion is the monoid wreath product Sl w N2 of the variety of semilattices and the variety of semigroups with zero multiplication. The number of elements of the lattice L(Sl w N2) of subvarieties of Sl w N2 is still unknown. In our paper, we show that the lattice L(Sl w N2) contains no less than 33 elements. In addition, we give some exponential upper bound of the cardinality of this lattice.

作者简介

A. Tishchenko

Financial University under the Government of the Russian Federation

编辑信件的主要联系方式.
Email: alextish@bk.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017