1-D Schrödinger Operators with Local Interactions on a Discrete Set with Unbounded Potential


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study spectral properties of the one-dimensional Schrödinger operators \( {\mathrm{H}}_{\mathrm{X},\alpha, \mathrm{q}}:=-\frac{{\mathrm{d}}^2}{\mathrm{d}{x}^2}+\mathrm{q}(x)+{\varSigma_x}_{{}_n}\in X{\alpha}_n\delta \left(x-{x}_n\right) \) with local interactions, d* = 0, and an unbounded potential q being a piecewise constant function, by using the technique of boundary triplets and the corresponding Weyl functions. Under various sufficient conditions for the self-adjointness and discreteness of Jacobi matrices, we obtain the condition of self-adjointness and discreteness for the operator HX,α,q.

作者简介

Aleksandra Ananieva

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine

编辑信件的主要联系方式.
Email: ananeva89@gmail.com
乌克兰, Slavyansk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016