Singularity of the Digit Inversor for the Q3-Representation of the Fractional Part of a Real Number, Its Fractal and Integral Properties


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce and study a continuous function I which is called a digit inversor for the Q3-representation of the fractional part of a real number. This representation is determined by a probability vector.(q0; q1; q2) with positive coordinates, generalizes the classical ternary representation, and coincides with this representation for q0 = q1 = q2 = 1/3: The values of this function are obtained from the Q3-representation of the argument by the following change of digits: 0 by 2; 1 by 1; and 2 by 0: The differential, integral, and fractal properties of the inversor are described. We prove that I is a singular function for q0q2.

作者简介

I.V. Zamrii

Drahomanov National Pedagogic University

编辑信件的主要联系方式.
Email: irina-zamrij@yandex.ru
乌克兰, Pyrohov Str., 9, Kyiv, 01601

M.V. Prats’ovytyi

Drahomanov National Pedagogic University

Email: irina-zamrij@yandex.ru
乌克兰, Pyrohov Str., 9, Kyiv, 01601

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016