On an Inverse Problem for a One-Dimensional Two-Velocity Dynamical System


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The evolution of the dynamical system under consideration is governed by the wave equation ρutt − (γux)x + Aux + Bu = 0, x>0, t > 0, with the zero initial Cauchy data and Dirichlet boundary control at x = 0. Here, ρ, γ, A, B are smooth 2 × 2–matrix-valued functions of x; ρ = diag {ρ1, ρ2} and γ = diag {γ1, γ2} are matrices with positive entries; u = u(x, t) is a solution (an ℝ2-valued function). In applications, the system corresponds to one-dimensional models, in which there are two types of wave modes, which propagate with different velocities and interact with each other. The “input→state” correspondence is realized by the response operator R : u(0, t) _→ γ(0)ux(0, t), t ≥ 0, which plays the role of inverse data. The representations for the coefficients A and B, which are used for their determination via the response operator, are derived. An example of two systems with the same response operator is given, where in the first system the wave modes do not interact, whereas in the second one the interaction does occur. Bibliography: 3 titles.

作者简介

A. Pestov

St.Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: pestov@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016