Young Tableaux and Stratification of the Space of Square Complex Matrices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A stratification of the manifold of all square matrices is considered. One equivalence class consists of the matrices with the same sets of values of rank(A − λiI)j . The stratification is consistent with a fibration on submanifolds of matrices similar to each other, i.e., with the adjoint orbits fibration. Internal structures of matrices from one equivalence class are very similar; among other factors, their (co)adjoint orbits are birationally symplectomorphic. The Young tableaux technique developed in the paper describes this stratification and the fibration of the strata on (co)adjoint orbits.

作者简介

M. Babich

St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University

编辑信件的主要联系方式.
Email: mbabich@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016