Asymptotic Models of Anisotropic Heterogeneous Elastic Walls of Blood Vessels


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using the dimension reduction procedure for a three-dimensional elasticity system, we derive a two-dimensional model for elastic laminate walls of a blood vessel. In the case of a sufficiently small wall thickness, we derive a system of limit equations coupled with the Navier–Stokes equations through the stress and velocity, i.e., dynamic and kinematic conditions on the interior surface of the wall. We deduce explicit formulas for the effective rigidity tensor of the wall in two natural cases. We show that if the blood flow remains laminar, then the cross-section of the orthotropic homogeneous blood vessel becomes circular.

作者简介

V. Kozlov

Linköping University

Email: s.nazarov@spbu.ru
瑞典, Linköping, SE-581 83

S. Nazarov

Saint-Petersburg State University; Peter the Great Saint-Petersburg State Polytechnical University; Institute of Problems of Mechanical Engineering RAS,

编辑信件的主要联系方式.
Email: s.nazarov@spbu.ru
俄罗斯联邦, 7-9, Universitetskaya nab., St. Petersburg, 199034; 29, Polytechnicheskaya ul., St. Petersburg, 195251; 61, V.O., Bolshoj pr., St. Petersburg, 199178

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016