On Algorithmic Methods of Analysis of Two-Colorings of Hypergraphs
- 作者: Lebedeva A.V.1
-
隶属关系:
- Moscow State University
- 期: 卷 213, 编号 2 (2016)
- 页面: 211-229
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237159
- DOI: https://doi.org/10.1007/s10958-016-2711-7
- ID: 237159
如何引用文章
详细
Abstract. This paper deals with an extremal problem concerning hypergraph colorings. Let k be an integer. The problem is to find the value mk(n) equal to the minimum number of edges in an n-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains at least k vertices of each color. In this paper, we obtain upper bounds of mk(n) for small k and n, the exact value of m4(8), and a lower bound for m3(7).
补充文件
