Cycles on the Hyperbolic Plane of Positive Curvature


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study properties of hyperbolic and elliptic cycles of a hyperbolic plane Ĥ of positive curvature. An analog of the Pythagorean theorem for a right triangle with a parabolic hypotenuse is proved. For each type of lines, we obtain formulas expressing the length of a chord of a hyperbolic cycle in terms of the radius of the cycle, the measure of the central angle corresponding to the chord, and the radius of curvature of Ĥ. The plane Ĥ is considered in the projective interpretation. Bibliography: 11 titles.

作者简介

L. Romakina

Saratov State University

编辑信件的主要联系方式.
Email: romakinaln@mail.ru
俄罗斯联邦, Saratov

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016