Polygons Inscribed in a Convex Figure


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper contains a survey of results about the possibility of inscribing convex polygons of particular types into a plane convex figure. It is proved that if K is a smooth convex figure, then K is circumscribed either about four different reflection-symmetric, convex, equilateral pentagons or about a regular pentagon.

Let S be a family of convex hexagons whose vertices are the vertices of two negatively homothetic equilateral triangles with common center. It is proved that if K is a smooth convex figure, then K is circumscribed either about a hexagon in S or about two pentagons with vertices at the vertices of two hexagons in S. In the latter case, the sixth vertex of one of the hexagons lies outside K, while the sixth vertex of another one lies inside K.

作者简介

V. Makeev

St.Petersburg State University

编辑信件的主要联系方式.
Email: mvv57@inbox.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2015