Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 233, № 5 (2018)

Article

Congratulations

Journal of Mathematical Sciences. 2018;233(5):603-603
pages 603-603 views

Formal Matrices and Rings Close to Regular

Abyzov A., Tuganbaev A.

Аннотация

This paper contains new and known results on formal matrix rings close to regular. The main results are given with proofs.

Journal of Mathematical Sciences. 2018;233(5):604-615
pages 604-615 views

On Linear Groups with the Property of Order Finiteness of All Primitive Words in Generators

Admiralova A., Beniash-Kryvets V.

Аннотация

It is well known that a finitely generated linear group of finite exponent is finite. It is proved in this paper that there exist infinite finitely generated linear groups such that all primitive words from generators have finite order.

Journal of Mathematical Sciences. 2018;233(5):616-625
pages 616-625 views

On p-Adic Approximation of Sums of Binomial Coefficients

Aidagulov R., Alekseyev M.

Аннотация

We propose higher-order generalizations of Jacobsthal’s p-adic approximation for binomial coefficients. Our results imply explicit formulas for linear combinations of binomial coefficients \( \left(\underset{p}{ip}\right)\left(i=1,2,\dots \right) \)

Journal of Mathematical Sciences. 2018;233(5):626-634
pages 626-634 views

On the A. V. Mikhalev Problem for Weakly Artinian Lie Algebras

Blagovisnaya A., Pikhtilkova O., Pikhtilkov S.

Аннотация

The A. V. Mikhalev problem for weakly Artinian Lie algebras is solved. The theorem about solvability of prime radical of weakly Artinian Lie algebras is proved. An analogous result was generalized for Ω-groups.

Journal of Mathematical Sciences. 2018;233(5):635-639
pages 635-639 views

Groups of Quotients of Semigroups of Invertible Nonnegative Matrices over Skewfields

Bunina E., Mikhalev A., Nemiro V.

Аннотация

In this paper, we prove that for a linearly ordered skewfield the groups of quotients of the semigroup Gn(????) coincides with the group GLn(????) for n ≥ 3.

Journal of Mathematical Sciences. 2018;233(5):640-645
pages 640-645 views

Elementary Equivalence of Stable Linear Groups over Local Commutative Rings with 1/2

Bunina E., Mikhalev A., Solovyev I.

Аннотация

In this paper, we prove a criterion for elementary equivalence of stable linear groups over commutative local rings with invertible two.

Journal of Mathematical Sciences. 2018;233(5):646-655
pages 646-655 views

Annihilators and Finitely Generated Modules

Golod E., Tuganbaev A.

Аннотация

We prove that B + AnnM = Ann(M/MB) for every finitely generated right module M over a strongly regular ring A and every ideal B of the ring A.

Journal of Mathematical Sciences. 2018;233(5):656-658
pages 656-658 views

Homomorphisms of Lie Groups

Golubchik I., Murseeva A.

Аннотация

In this paper, the authors describe homomorphisms of Lie groups into the groups u(R) of invertible elements of rings R for a large class of rings R, which contains, in particular, subrings of matrix rings and also Noetherian rings.

Journal of Mathematical Sciences. 2018;233(5):659-665
pages 659-665 views

On the Additive Structure and Asymptotics of Codimensions cn in the Algebra F(5)

Grishin A.

Аннотация

In this paper, we investigate the additive structure of the algebra F(5), i.e., a relatively free, associative, countably-generated algebra with the identity [x1, . . . , x5] = 0 over an infinite field of characteristic ≠2, 3. We study the space of proper multilinear polynomials in this algebra and means of basis construction in one of its basic subspaces. As an additional result, we obtain estimations of codimensions cn = dimPn/Pn∩ T(5), where Pn is the space of multilinear polynomials of degree n in F(5) and T(5) is the T-ideal generated by the long commutator [x1, . . . , x5].

Journal of Mathematical Sciences. 2018;233(5):666-674
pages 666-674 views

Monotone Linear Transformations on Matrices over Semirings

Guterman A., Kreines E., Wang Q.

Аннотация

We characterize linear transformations on matrices over commutative antinegative semirings that are monotone with respect to minus, star, and sharp partial orders.

Journal of Mathematical Sciences. 2018;233(5):675-686
pages 675-686 views

Projective and Injective Acts Over Completely Simple Semigroups

Kozhukhov I., Petrikov A.

Аннотация

We describe projective and injective acts over completely simple semigroups. Projective covers and injective hulls of acts over such semigroups are constructed.

Journal of Mathematical Sciences. 2018;233(5):687-694
pages 687-694 views

Serial Group Rings of Finite Simple Groups of Lie Type

Kukharev A., Puninski G.

Аннотация

Suppose that F is a field whose characteristic p divides the order of a finite group G. It is shown that if G is one of the groups 3D4(q), E6(q), 2E6(q), E7(q), E8(q), F4(q), 2F4(q), or 2G2(q), then the group ring FG is not serial. If G = G2(q2), then the ring FG is serial if and only if either p > 2 divides q2 1, or p = 7 divides \( {q}^2+\sqrt{3q}+1 \) but 49 does not divide this number.

Journal of Mathematical Sciences. 2018;233(5):695-701
pages 695-701 views

Finite Combinatorial Generation of Metabelian T-Ideal

Latyshev V.

Аннотация

In this work, we develop our idea on the construction of a system of combinatorial generators in a T-ideal of a free associative algebra, which is a full analogy of a Gröbner–Shirshov basis in a polynomial ideal. We prove a theorem on multilinear monomials that enables us to establish the existence of a finite set of combinatorial generators in a metabelian T-ideal.

Journal of Mathematical Sciences. 2018;233(5):702-712
pages 702-712 views

On the Varieties of Commutative Metabelian Algebras

Mishchenko S., Panov N., Frolova Y., Nguyen T.

Аннотация

The paper presents new results on varieties of commutative metabelian algebras over a field of zero characteristic. We study the structure of the multilinear part of the variety of all commutative metabelian algebras as a module of the symmetric group. Two almost nilpotent varieties are introduced and studied in this class of algebras. We prove the nonexistence of other almost nilpotent commutative metabelian varieties of subexponential growth.

Journal of Mathematical Sciences. 2018;233(5):713-723
pages 713-723 views

The Atomic Theory of Division and Intersection of Semiring Ideals

Pentus A., Pentus M.

Аннотация

We consider two-sided ideals of semirings. More precisely, we study the theory of two-sided ideals in the signature consisting of the predicate symbol ⊆ and three function symbols that denote the intersection, right division, and left division of ideals. We prove the decidability of the set of those atomic formulas in this signature that are valid for all semirings and all valuations.

Journal of Mathematical Sciences. 2018;233(5):724-731
pages 724-731 views

Once More on the Lattice of Subvarieties of the Wreath Product of the Variety of Semilattices and the Variety of Semigroups with Zero Multiplication

Tishchenko A.

Аннотация

It is known that the monoid wreath product of any two semigroup varieties that are atoms in the lattice of all semigroup varieties may have a finite as well as an infinite lattice of subvarieties. If this lattice is finite, then as a rule it has at most eleven elements. This was proved in a paper of the author in 2007. The exclusion is the monoid wreath product Sl w N2 of the variety of semilattices and the variety of semigroups with zero multiplication. The number of elements of the lattice L(Sl w N2) of subvarieties of Sl w N2 is still unknown. In a previous paper, we have shown that the lattice L(Sl w N2) contains a sublattice having 33 elements. In the present paper, it is proved that the lattice under consideration has exactly three maximal subvarieties. As a first application of the obtained results we calculate the finite basis of the lattice union of the variety of all semilattices and the largest variety among subvarieties of our lattice having at least one heterotypic identity. As a second application we show that the considered lattice of subvarieties has at least 39 elements

Journal of Mathematical Sciences. 2018;233(5):732-744
pages 732-744 views

Group Ring Ideals Related to Reed–Muller Codes

Tumaykin I.

Аннотация

Reed–Muller codes are one of the most well-studied families of codes; however, there are till open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes ℳπ(m, k) over a prime field are powers of the radical RS of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals ℜSπ(m, k) that arise while studying the inclusions of the basic codes and radical powers.

Journal of Mathematical Sciences. 2018;233(5):745-748
pages 745-748 views

On the UA-Properties of Abelian sp-Groups and Their Endomorphism Rings

Chistyakov D.

Аннотация

An R-module A is said to be a UA-module if it is not possible to change the addition of A without changing the action of R on A. A semigroup (R, ·) is said to be a UA-ring if there exists a unique binary operation + making (R, ·, +) into a ring. In this paper, the UA-properties of sp-groups and their endomorphism rings are studied.

Journal of Mathematical Sciences. 2018;233(5):749-754
pages 749-754 views

On Partially Ordered Rings

Shirshova E.

Аннотация

A new notion of a partial ordering for rings is considered. Properties of arbitrary partially right \( \mathcal{K} \)-ordered rings are investigated. A series of results for linearly right \( \mathcal{K} \)-ordered rings is obtained. Some theorems are proved for ideals of those rings.

Journal of Mathematical Sciences. 2018;233(5):755-765
pages 755-765 views

Expansion of Matrix Functions into Trigonometric Series

Shmatkov V.

Аннотация

In this work, we set the conditions under which matrix functions are expanded into matrix trigonometric series.

Journal of Mathematical Sciences. 2018;233(5):766-769
pages 766-769 views

Specific Properties of One-Dimensional Pseudorepresentations of Groups

Shtern A.

Аннотация

We obtain assertions concerning general properties of one-dimensional (not necessarily bounded) pseudorepresentations of groups. In particular, we obtain a quantitative condition on the numerical defect of a given pseudorepresentation which is sufficient for the pseudorepresentation to be pure, i.e., for the restriction of the given pseudorepresentation to every amenable subgroup be an ordinary character of this subgroup.

Journal of Mathematical Sciences. 2018;233(5):770-776
pages 770-776 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».