Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 233, № 4 (2018)

Article

On Regularity of Solutions for Initial-Boundary Value Problems for the Zakharov–Kuznetsov Equation

Antonova A., Faminskii A.
Journal of Mathematical Sciences. 2018;233(4):427-445
pages 427-445 views

On Some Degenerate Elliptic Equations Arising in Geometric Problems

Capuzzo Dolcetta I., Leoni F., Vitolo A.

Аннотация

We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.

Journal of Mathematical Sciences. 2018;233(4):446-461
pages 446-461 views

On Boundary-Value Problems for Second-Order Elliptic and Parabolic Systems

Golubeva E., Dubinskii Y.

Аннотация

For nonstandard boundary-value problems for systems of equations of elliptic and parabolic types with vector boundary conditions, the well-posedness is proved. Typical examples are provided.

Journal of Mathematical Sciences. 2018;233(4):462-479
pages 462-479 views

On New Structures in the Theory of Fully Nonlinear Equations

Ivochkina N., Filimonenkova N.

Аннотация

We describe the current state of the theory of equations with m-Hessian stationary and evolution operators. It is quite important that new algebraic and geometric notions appear in this theory. In the present work, a list of those notions is provided. Among them, the notion of m-positivity of matrices is quite important; we provide a proof of an analog of Sylvester’s criterion for such matrices. From this criterion, we easily obtain necessary and sufficient conditions for existence of classical solutions of the first initial boundary-value problem for m-Hessian evolution equations. The asymptotic behavior of m-Hessian evolutions in a semibounded cylinder is considered as well.

Journal of Mathematical Sciences. 2018;233(4):480-494
pages 480-494 views

On Feedback-Principle Control for Systems with Aftereffect Under Incomplete Phase-Coordinate Data

Kublanov V., Maksimov V.

Аннотация

For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.

Journal of Mathematical Sciences. 2018;233(4):495-513
pages 495-513 views

The Riesz Basis Property with Brackets for Dirac Systems with Summable Potentials

Savchuk A., Sadovnichaya I.

Аннотация

In the space ℍ = (L2[0, π])2, we study the Dirac operator \( {\mathrm{\mathcal{L}}}_{P,U} \) generated by the differential expression ℓP(y) = By′ + Py, where

\( B=\left(\begin{array}{cc}-i& 0\\ {}0& i\end{array}\right),\kern0.5em P(x)=\left(\begin{array}{cc}{p}_1(x)& {p}_2(x)\\ {}{p}_3(x)& {p}_4(x)\end{array}\right),\kern0.5em \mathbf{y}(x)=\left(\begin{array}{c}{y}_1(x)\\ {}{y}_2(x)\end{array}\right), \)

and the regular boundary conditions

\( U\left(\mathbf{y}\right)=\left(\begin{array}{cc}{u}_{11}& {u}_{12}\\ {}{u}_{21}& {u}_{22}\end{array}\right)\left(\begin{array}{c}{y}_1(0)\\ {}{y}_2(0)\end{array}\right)+\left(\begin{array}{cc}{u}_{13}& {u}_{14}\\ {}{u}_{23}& {u}_{24}\end{array}\right)\left(\begin{array}{c}{y}_1\left(\uppi \right)\\ {}{y}_2\left(\uppi \right)\end{array}\right)=0. \)

The elements of the matrix P are assumed to be complex-valued functions summable over [0, π]. We show that the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is discrete and consists of eigenvalues {λn}n ∈ ℤ such that \( {\uplambda}_n={\uplambda}_n^0+o(1) \) as |n| → ∞, where \( {\left\{{\uplambda}_n^0\right\}}_{n\in \mathrm{\mathbb{Z}}} \) is the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) forms a Riesz base in the space ℍ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) are double, all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is a Riesz base of subspaces (Riesz base with brackets) in the space ℍ.

Journal of Mathematical Sciences. 2018;233(4):514-540
pages 514-540 views

Smoothness of Generalized Solutions of the Dirichlet Problem for Strongly Elliptic Functional Differential Equations with Orthotropic Contractions

Tasevich A.

Аннотация

In the disk, we consider the first boundary-value problem for a functional differential equation containing transformations of orthotropic contractions of independent variables of the unknown function. We study the smoothness of generalized solutions inside special-type subdomains and near their boundaries and pose strong ellipticity conditions.

Journal of Mathematical Sciences. 2018;233(4):541-554
pages 541-554 views

Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory

Vlasov V., Rautian N.

Аннотация

We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.

Journal of Mathematical Sciences. 2018;233(4):555-577
pages 555-577 views

Method of Guiding Functions for Existence Problems for Periodic Solutions of Differential Equations

Zvyagin V., Kornev S.

Аннотация

We provide a review and systematic explanation of various generalizations of the guiding function method. The current state of the said method and its applications to various kinds of problems for nonlinear periodic systems described by differential and functional differential equations are considered.

Journal of Mathematical Sciences. 2018;233(4):578-601
pages 578-601 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».