Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 221, № 5 (2017)

Article

Estimates of a product of the inner radii of nonoverlapping domains

Bakhtin A., Zabolotnyi Y.

Аннотация

In the geometric theory of functions of complex variables, we consider V.N. Dubinin’s extremal problem associated with estimates of a functional defined on a system of nonoverlapping domains and obtain a particular solution of this problem.

Journal of Mathematical Sciences. 2017;221(5):623-629
pages 623-629 views

On the inner radii of symmetric nonoverlapping domains

Dvorak I.

Аннотация

One of the classical problems of the geometric theory of functions that concerns extreme decompositions of the complex plane is considered.

Journal of Mathematical Sciences. 2017;221(5):630-637
pages 630-637 views

On recent advances in boundary-value problems in the plane

Gutlyanskiĭ V., Ryazanov V.

Аннотация

The survey is devoted to recent advances in nonclassical solutions of the main boundary-value problems such as the well-known Dirichlet, Hilbert, Neumann, Poincaré, and Riemann problems in the plane. Such solutions are essentially different from the variational solutions of the classical mathematical physics and based on the nonstandard point of view of the geometric function theory with a clear visual sense. The traditional approach of the latter is the meaning of the boundary values of functions in the sense of the so-called angular limits or limits along certain classes of curves terminated at the boundary. This become necessary if we start to consider boundary data that are only measurable, and it is turned out to be useful under the study of problems in the field of mathematical physics as well. Thus, we essentially widen the notion of solutions and, furthermore, obtain spaces of solutions of the infinite dimension for all the given boundary-value problems. The latter concerns the Laplace equation, as well as its counterparts in the potential theory for inhomogeneous and anisotropic media.

Journal of Mathematical Sciences. 2017;221(5):638-670
pages 638-670 views

Convergence of skew Brownian motions with local times at several points that are contracted into a single one

Krykun I.

Аннотация

Conditions of convergence in mean of skew Brownian motions with local times at several points that are contracted into a limit point are obtained. It is proved that the limit process is also a skew Brownian motion with local time at the limit point. A formula to calculate the coefficient of the local time of the limit process is given.

Journal of Mathematical Sciences. 2017;221(5):671-678
pages 671-678 views

Spectral and pseudospectral functions of various dimensions for symmetric systems

Mogilevskii V.

Аннотация

The main object of the paper is a symmetric system JyB(t)y = ⋋∆(t)y defined on an interval Ι = [a, b) with the regular endpoint a. Let φ(⋅, λ) be a matrix solution φ(⋅, λ) of this system of an arbitrary dimension, and let \( \left( V\kern0.5em f\right)(s)={\displaystyle \underset{I}{\int }{\varphi}^{\ast}\left( t, s\right)\varDelta (t) f(t) d t} \) be the Fourier transform of the function f(⋅) ∈ LΔ2(I). We define a pseudospectral function of the system as a matrix-valued distribution function σ(·) of the dimension nσ such that V is a partial isometry from \( {L}_{\varDelta}^2(I)\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em {L}^2\left(\sigma; \kern0.5em {\mathbb{C}}^{n_{\sigma}}\right) \) with minimally possible kernel. Moreover, we find the minimally possible value of nσ and parametrize all spectral and pseudospectral functions of every possible dimensions nσ by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov and Dym; Sakhnovich, Sakhnovich and Roitberg; Langer and Textorius.

Journal of Mathematical Sciences. 2017;221(5):679-711
pages 679-711 views

On monogenic mappings of a quaternionic variable

Shpakivskyi V., Kuzmenko T.

Аннотация

Earlier [1], a new class of quaternionic so-called G-monogenic (differentiable in the meaning of Gâteaux) mappings was considered. In the present paper, we introduce quaternionic H-monogenic (differentiable in the sense of Hausdorff) mappings and establish a relation between G- and H-monogenic mappings. The equivalence of different definitions of a G-monogenic mapping is proved.

Journal of Mathematical Sciences. 2017;221(5):712-726
pages 712-726 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».