Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 217, № 6 (2016)

Article

To the 80th Birthday of Professor V. M. Tikhomirov

Journal of Mathematical Sciences. 2016;217(6):671-671
pages 671-671 views

Mix of Controls and the Pontryagin Maximum Principle

Avakov E., Magaril-Il’yaev G.

Аннотация

In this paper, necessary conditions for a minimum (the Pontryagin maximum principle) for an optimal control problem are proved on the basis of the concept of a mix, which enables one to reduce the study of the original problem to some approximation thereof, which is linear in the control. The study of the latter problem proves more simple.

Journal of Mathematical Sciences. 2016;217(6):672-682
pages 672-682 views

Connectedness and Other Geometric Properties of Suns and Chebyshev Sets

Alimov A., Tsar’kov I.

Аннотация

This survey is concerned with structural characteristics of “suns” in normed linear spaces. Special attention is paid to connectedness and monotone path-connectedness of suns. We address both direct theorems of the geometric approximation theory, in which approximative properties of sets are derived from their structural characteristics, and inverse theorems, in which from approximative characteristics of sets one derives their structural properties.

Journal of Mathematical Sciences. 2016;217(6):683-730
pages 683-730 views

On the Continuity of Inverse Mappings for Lipschitz Perturbations of Covering Mappings

Arutyunov A., Zhukovskiy S.

Аннотация

In this paper, we study the question of the existence of a continuous right inverse mapping for a covering mapping. To describe covering mappings that have a continuous right inverse, a concept of strong covering is introduced. It is shown that the property of strong covering is stable under small Lipschitz perturbations.

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 4, pp. 93–99, 2014.

Journal of Mathematical Sciences. 2016;217(6):731-735
pages 731-735 views

On Integral Representation of Γ-Limit Functionals

Zhikov V., Pastukhova S.

Аннотация

We consider the Γ-convergence of a sequence of integral functionals Fn(u), defined on the functions u from the Sobolev space W1(Ω) (α > 1); Ω is a bounded Lipschitz domain, where the integrand fn(x, u,∇u) depends on a function u and its gradient ∇u. As functions of ξ, the integrands fn(x, s, ξ) are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents α < β. Moreover, the integrands fn(x, s, ξ) are equi-continuous over s in some sense with respect to n. We prove that for the functions from L ∞ (Ω) ∩ W1(Ω) the Γ-limit functional coincides with an integral functional F(u) for which the integrand f(x, s, ξ) is of the same class as fn(x, s, ξ).

Journal of Mathematical Sciences. 2016;217(6):736-750
pages 736-750 views

On Necessary Conditions for a Minimum

Ioffe A.

Аннотация

We discuss a general approach to necessary optimality conditions based on the so-called “optimality alternative,” which reduces a problem with constraints to an unconstrained problem or a sequence of unconstrained problems. The power of the approach is demonstrated by a proof of a necessary optimality condition in an abstract problem with mixed (convex vs. nonconvex) structure and a new proof of Clarke’s “stratified” maximum principle for optimal control of differential inclusions.

Journal of Mathematical Sciences. 2016;217(6):751-772
pages 751-772 views

Course of Mathematics

Tikhomirov V.

Аннотация

This paper is devoted to problems of modern mathematical education. Fundamental problems of mathematics are considered in their unity.

Journal of Mathematical Sciences. 2016;217(6):773-802
pages 773-802 views

On an Estimate Connected with the Stabilization of a Normal Parabolic Equation by Start Control

Fursikov A., Shatina L.

Аннотация

After a brief revision of facts concerning semilinear parabolic equations of normal type and their nonlocal stabilization by start control, we provide a simplification of the proof of the lower bound for a functional of the solution to the heat equation with initial condition of a special type. This bound is essential to prove the nonlocal stabilization of equations of normal type. The simplification presented is required for further development of the nonlocal stabilization theory.

Journal of Mathematical Sciences. 2016;217(6):803-826
pages 803-826 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».