Integrable Two-Dimensional Lattices. Characteristic Lie Rings and Classification
- Авторы: Habibullin I.T.1,2, Poptsova M.N.1
-
Учреждения:
- Institute of Mathematics, Ufa Scientific Center of the Russian Academy of Sciences
- Bashkir State University
- Выпуск: Том 241, № 4 (2019)
- Страницы: 396-408
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242902
- DOI: https://doi.org/10.1007/s10958-019-04432-5
- ID: 242902
Цитировать
Аннотация
This paper is devoted to the problem of classification of integrable nonlinear models with three independent variables. The classification algorithm based on the notion of characteristic Lie rings is applied to a class of two-dimensional lattices of hydrodynamic type. By imposing appropriate cutting-off boundary conditions, we reduce the lattice to a system of hyperbolic equations, which is assumed to be a Darboux integrable system. As a result, we found a new integrable lattice.
Об авторах
I. Habibullin
Institute of Mathematics, Ufa Scientific Center of the Russian Academy of Sciences; Bashkir State University
Автор, ответственный за переписку.
Email: habibullinismagil@gmail.com
Россия, Ufa; Ufa
M. Poptsova
Institute of Mathematics, Ufa Scientific Center of the Russian Academy of Sciences
Email: habibullinismagil@gmail.com
Россия, Ufa
Дополнительные файлы
