A Chaos Theoretic Approach to Animal Activity Recognition


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Animal activity is a descriptor that can be potentially used to track the health and well-being, which is obviously very important to improve the management process and productivity of farms. This paper deals with an animal behavior recognition problem using a chaos theory approach where we adopt such a technique for automatic classification of calves behavioral states. Two main mutually exclusive behaviors are of interest, namely, lying and standing/walking with six possible activities: feeding, drinking water, drinking milk, playing, rumination, and neutral. The time series generated by ear-tags with a 3D-accelerometer after a wavelet denoising transformation and frequency stabilization are treated as representations of the nonlinear dynamical system. The dynamical system of a certain animal state exhibits specific strange attractor in a phase space. A characterization of such an attractor is performed through metric, dynamic, and topological invariants including Lyapunov exponent, correlation dimension, length of a phase trajectory, sum of edges forming a convex hull and others. These measures are used as a feature vector for the subsequent classification. In a cross validation scheme, six classifiers are built on each training set, and the hyper-parameters are optimized using an inner validation set. The classifier that reaches the highest accuracy on the inner validation set is used to classify the outer validation set. It is shown that this approach can be useful at predicting activity states as an alternative methodology for the animal behavior state recognition problem with acceptable classification accuracy. Furthermore it is possible to include this procedure as part of an ensemble method in machine learning where a combination of different models is used.

Об авторах

V. Sturm

Johannes Kepler University

Автор, ответственный за переписку.
Email: Valentin.Sturm@jku.at
Австрия, Linz

D. Efrosinin

Johannes Kepler University

Email: Valentin.Sturm@jku.at
Австрия, Linz

N. Efrosinina

Johannes Kepler University

Email: Valentin.Sturm@jku.at
Австрия, Linz

L. Roland

University of Veterinary Medicine

Email: Valentin.Sturm@jku.at
Австрия, Vienna

M. Iwersen

University of Veterinary Medicine

Email: Valentin.Sturm@jku.at
Австрия, Vienna

M. Drillich

University of Veterinary Medicine

Email: Valentin.Sturm@jku.at
Австрия, Vienna

W. Auer

Smartbow GmbH

Email: Valentin.Sturm@jku.at
Австрия, Wiebern

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».