On the Classification Problem of Measurable Functions in Several Variables and on Matrix Distributions
- Авторы: Vershik A.M.1, Haböck U.2
-
Учреждения:
- St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
- Competence Centre for IT–Security
- Выпуск: Том 219, № 5 (2016)
- Страницы: 683-699
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238652
- DOI: https://doi.org/10.1007/s10958-016-3138-x
- ID: 238652
Цитировать
Аннотация
We resume results of the first author on classification of measurable functions in several variables, with some minor corrections of purely technical nature. We give a partial solution of the characterization problem for so-called matrix distributions which are metric invariants of measurable functions introduced by the first author. Matrix distributions are considered as (Sℕ × Sℕ)-invariant, ergodic measures on the space of matrices; this fact connects our problem with Aldous’ and Hoover’s theorem. Bibliography: 14 titles.
Об авторах
A. Vershik
St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
Автор, ответственный за переписку.
Email: vershik@pdmi.ras.ru
Россия, St.Petersburg
U. Haböck
Competence Centre for IT–Security
Email: vershik@pdmi.ras.ru
Австрия, Wien
Дополнительные файлы
