Operator Splitting for Quasi-Linear Abstract Hyperbolic Equation
- Авторы: Dikhaminjia N.1,2, Rogava J.1,2, Tsiklauri M.3
-
Учреждения:
- Iv. Javakhishvili Tbilisi State University
- I. Vekua Institute of Applied Mathematics
- EMC Laboratory, Missouri University of Science & Technology
- Выпуск: Том 218, № 6 (2016)
- Страницы: 737-741
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238301
- DOI: https://doi.org/10.1007/s10958-016-3058-9
- ID: 238301
Цитировать
Аннотация
We consider an abstract hyperbolic equation with a Lipschitz continuous operator, where the main operator is self-adjoint and positive definite and represents a sum of two similar operators. For this equation, we construct a decomposition scheme of high order of accuracy. This scheme is based on rational splitting of cosine-operator function.
Об авторах
N. Dikhaminjia
Iv. Javakhishvili Tbilisi State University; I. Vekua Institute of Applied Mathematics
Email: jemal.rogava@tsu.ge
Грузия, Tbilisi; Tbilisi
J. Rogava
Iv. Javakhishvili Tbilisi State University; I. Vekua Institute of Applied Mathematics
Автор, ответственный за переписку.
Email: jemal.rogava@tsu.ge
Грузия, Tbilisi; Tbilisi
M. Tsiklauri
EMC Laboratory, Missouri University of Science & Technology
Email: jemal.rogava@tsu.ge
США, Rolla, Missouri
Дополнительные файлы
