On the Localization Conditions for the Spectrum of a Non-Self-Adjoint Sturm–Liouville Operator with Slowly Growing Potential
- Autores: Valiullina L.G.1, Ishkin K.K.1
-
Afiliações:
- Bashkir State University
- Edição: Volume 241, Nº 5 (2019)
- Páginas: 556-569
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242918
- DOI: https://doi.org/10.1007/s10958-019-04445-0
- ID: 242918
Citar
Resumo
We consider the Sturm–Liouville operator T0 on the semi-axis (0,+∞) with the potential eiθq, where 0 < θ < π and q is a real-valued function that may have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: T0 is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class for any p < ∞. We find conditions for q and perturbations of V under which the localization or the asymptotics of its spectrum is preserved.
Sobre autores
L. Valiullina
Bashkir State University
Autor responsável pela correspondência
Email: l.matem2012@yandex.ru
Rússia, Ufa
Kh. Ishkin
Bashkir State University
Email: l.matem2012@yandex.ru
Rússia, Ufa
Arquivos suplementares
