On the Localization Conditions for the Spectrum of a Non-Self-Adjoint Sturm–Liouville Operator with Slowly Growing Potential


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the Sturm–Liouville operator T0 on the semi-axis (0,+) with the potential eq, where 0 < θ < π and q is a real-valued function that may have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: T0 is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class for any p < ∞. We find conditions for q and perturbations of V under which the localization or the asymptotics of its spectrum is preserved.

Sobre autores

L. Valiullina

Bashkir State University

Autor responsável pela correspondência
Email: l.matem2012@yandex.ru
Rússia, Ufa

Kh. Ishkin

Bashkir State University

Email: l.matem2012@yandex.ru
Rússia, Ufa

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019