Automorphisms of semigroups of k-linked upfamilies


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.

Sobre autores

Volodymyr Gavrylkiv

Vasyl Stefanyk Precarpathian National University

Autor responsável pela correspondência
Email: vgavrylkiv@gmail.com
Ucrânia, Ivano-Frankivsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018