Automorphisms of semigroups of k-linked upfamilies
- Autores: Gavrylkiv V.M.1
-
Afiliações:
- Vasyl Stefanyk Precarpathian National University
- Edição: Volume 234, Nº 1 (2018)
- Páginas: 21-34
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241743
- DOI: https://doi.org/10.1007/s10958-018-3978-7
- ID: 241743
Citar
Resumo
A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
Palavras-chave
Sobre autores
Volodymyr Gavrylkiv
Vasyl Stefanyk Precarpathian National University
Autor responsável pela correspondência
Email: vgavrylkiv@gmail.com
Ucrânia, Ivano-Frankivsk
Arquivos suplementares
