Nonunitary Representations of the Groups of U(p, q)-currents for q ≥ p > 1


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The purpose of this paper is to give a construction of representations of the group of currents for semisimple groups of rank greater than one. Such groups have no unitary representations in the Fock space, since the semisimple groups of this form have no nontrivial cohomology in faithful irreducible representations. Thus we first construct cohomology of the semisimple groups in nonunitary representations. The principal method is to reduce all constructions to Iwasawa subgroups (solvable subgroups of the semisimple groups), with subsequent extension to the original group. The resulting representation is realized in the so-called quasi-Poisson Hilbert space associated with natural measures on infinite-dimensional spaces.

Sobre autores

A. Vershik

St.Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University; Institute for Information Transmission Problems

Autor responsável pela correspondência
Email: avershik@gmail.com
Rússia, St. Petersburg; Moscow

M. Graev

Institute for System Analysis

Email: avershik@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018