Restoration of the Initial Data in the Problem for a Diffusion Equation with Fractional Derivative with Respect to Time
- Autores: Lopushans’ka H.P.1, М’yaus О.М.2
-
Afiliações:
- Franko L’viv National University
- “L’vivs’ka Politekhnika” National University
- Edição: Volume 229, Nº 2 (2018)
- Páginas: 187-199
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240400
- DOI: https://doi.org/10.1007/s10958-018-3670-y
- ID: 240400
Citar
Resumo
We prove the correctness of the inverse problem of finding a pair of functions: the classical solution u(x,t) of the first boundary-value problem for a linear diffusion equation with regularized fractional derivative of order α ∈ (1, 2) with respect to time in a rectangular domain (0, ℓ) × (0, t0] and unknown initial values of the function u(x,t) for the case of additionally given values of the function at a certain fixed time t0 .
Sobre autores
H. Lopushans’ka
Franko L’viv National University
Email: Jade.Santos@springer.com
Ucrânia, Lviv
О. М’yaus
“L’vivs’ka Politekhnika” National University
Email: Jade.Santos@springer.com
Ucrânia, Lviv
Arquivos suplementares
