Darboux transformation with parameter of generalized Jacobi matrices
- Autores: Kovalyov I.M.1
-
Afiliações:
- M. P. Dragomanov National Pedagogical University
- Edição: Volume 222, Nº 6 (2017)
- Páginas: 703-722
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239257
- DOI: https://doi.org/10.1007/s10958-017-3326-3
- ID: 239257
Citar
Resumo
A monic generalized Jacobi matrix \( \mathfrak{J} \) is factorized into upper and lower triangular two-diagonal block matrices of special forms so that J = UL. It is shown that such factorization depends on a free real parameter d(∈ ℝ). As the main result, it is shown that the matrix \( {\mathfrak{J}}^{\left(\mathbf{d}\right)}= LU \) is also a monic generalized Jacobi matrix. The matrix \( {\mathfrak{J}}^{\left(\mathbf{d}\right)} \) is called the Darboux transform of \( \mathfrak{J} \) with parameter d. An analog of the Geronimus formula for polynomials of the first kind of the matrix \( {\mathfrak{J}}^{\left(\mathbf{d}\right)} \) is proved, and the relations between m-functions of J and \( {\mathfrak{J}}^{\left(\mathbf{d}\right)} \) are found.
Sobre autores
Ivan Kovalyov
M. P. Dragomanov National Pedagogical University
Autor responsável pela correspondência
Email: i.m.kovalyov@gmail.com
Ucrânia, Kiev
Arquivos suplementares
