On Integral Representation of Γ-Limit Functionals


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the Γ-convergence of a sequence of integral functionals Fn(u), defined on the functions u from the Sobolev space W1(Ω) (α > 1); Ω is a bounded Lipschitz domain, where the integrand fn(x, u,∇u) depends on a function u and its gradient ∇u. As functions of ξ, the integrands fn(x, s, ξ) are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents α < β. Moreover, the integrands fn(x, s, ξ) are equi-continuous over s in some sense with respect to n. We prove that for the functions from L ∞ (Ω) ∩ W1(Ω) the Γ-limit functional coincides with an integral functional F(u) for which the integrand f(x, s, ξ) is of the same class as fn(x, s, ξ).

Sobre autores

V. Zhikov

Vladimir State University

Autor responsável pela correspondência
Email: zhikov@vlsu.ru
Rússia, Vladimir

S. Pastukhova

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)

Email: zhikov@vlsu.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016