Sharp Bernstein Type Inequalities for Splines in the Mean Square Metrics


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We give an elementary proof of the sharp Bernstein type inequality

\( {\left\Vert {f}^{(s)}\right\Vert}_2\le \frac{n^s}{2^s}{\left(\frac{\kappa_{2r+1-2s}}{\kappa_{2r+1}}\right)}^{1/2}{\left\Vert {\updelta}_{\frac{\uppi}{n}}^sf\right\Vert}_2. \)
Here n, r, s ∈ ℕ, f is a 2π-periodic spline of order r and of minimal defect with nodes\( \frac{\mathrm{j}\uppi}{n} \), j ∈ Z, δhsis the difference operator of order s with step h, and the Kmare the Favard constants. A similar inequality for the space L2(ℝ) is also established. Bibliography: 5 titles.

Sobre autores

O. Vinogradov

St. Petersburg State University

Autor responsável pela correspondência
Email: olvin@math.spbu.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016