Blaschke Product for a Hilbert Space with Schwarz–Pick Kernel
- Autores: Videnskii I.V.1
-
Afiliações:
- St. Petersburg State University
- Edição: Volume 215, Nº 5 (2016)
- Páginas: 585-594
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237667
- DOI: https://doi.org/10.1007/s10958-016-2864-4
- ID: 237667
Citar
Resumo
For an analog of a Blaschke product for a Hilbert space with Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with Nevanlinna–Pick kernel), it is proved that only finitely many elementary multipliers may have zeros on a fixed compact set. It is also proved that partial Blaschke products multiplied by an appropriate reproducing kernel converge in the Hilbert space. These abstract theorems are applied to the weighted Hardy spaces in the unit disk and to the Drury–Arveson spaces. Bibliography: 11 titles.
Palavras-chave
Sobre autores
I. Videnskii
St. Petersburg State University
Autor responsável pela correspondência
Email: ilya.viden@gmail.com
Rússia, St. Petersburg
Arquivos suplementares
