On the Resolvent of Multidimensional Operators with Frequently Alternating Boundary Conditions with the Robin Homogenized Condition


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider an elliptic operator in a multidimensional domain with frequent alternation of the Dirichlet condition and the Robin boundary condition in the case where the homogenized operator contains only the original Robin boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain order sharp estimates for the rate of convergence. We construct a complete asymptotic expansion for the resolvent in the case where the resolvent acts on sufficiently smooth functions and the alternation of boundary conditions is strictly periodic and is given on a multidimensional hyperplane. Bibliography: 23 titles.

Sobre autores

D. Borisov

Institute of Mathematics, USC RAS; Bashkir State Pedagogical University; University of Hradec Králové

Autor responsável pela correspondência
Email: borisovdi@yandex.ru
Rússia, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003

T. Sharapov

Bashkir State Pedagogical University

Email: borisovdi@yandex.ru
Rússia, 3a, October Revolution St., Ufa, 450000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016