Interpolation Through Approximation in a Bernstein Space
- Авторлар: Shirokov N.A.1
-
Мекемелер:
- St.Petersburg State University and High School of Economics
- Шығарылым: Том 243, № 6 (2019)
- Беттер: 965-980
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/243194
- DOI: https://doi.org/10.1007/s10958-019-04597-z
- ID: 243194
Дәйексөз келтіру
Аннотация
Let Bσ be the Bernstein space of entire functions of exponential type at most σ bounded on the real axis. Consider a sequence Λ = {zn}n∈ℤ, zn = xn + iyn, such that xn+1 − xn ≥ l > 0 and |yn| ≤ L, n ∈ ℤ. Using approximation by functions from Bσ, we prove that for any bounded sequence A = {an}n∈ℤ, |an| ≤ M, n ∈ ℤ, there exists a function f ∈ Bσ with σ ≤ σ0(l,L) such that f|Λ = A.
Авторлар туралы
N. Shirokov
St.Petersburg State University and High School of Economics
Хат алмасуға жауапты Автор.
Email: nikolai.shirokov@gmail.com
Ресей, St.Petersburg
Қосымша файлдар
