Interpolation Through Approximation in a Bernstein Space


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let Bσ be the Bernstein space of entire functions of exponential type at most σ bounded on the real axis. Consider a sequence Λ = {zn}n∈ℤ, zn = xn + iyn, such that xn+1 − xn ≥ l > 0 and |yn| ≤ L, n ∈ ℤ. Using approximation by functions from Bσ, we prove that for any bounded sequence A = {an}n∈ℤ, |an| ≤ M, n ∈ ℤ, there exists a function f ∈ Bσ with σ ≤ σ0(l,L) such that f|Λ = A.

Авторлар туралы

N. Shirokov

St.Petersburg State University and High School of Economics

Хат алмасуға жауапты Автор.
Email: nikolai.shirokov@gmail.com
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019