Differential Operators of Infinite Order in the Space of Formal Laurent Series and in the Ring of Power Series with Integer Coefficients


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the Hurwitz product (convolution) in the space of formal Laurent series over an arbitrary field of zero characteristic. We obtain the convolution equation which is satisfied by the Euler series. We find the convolution representation for an arbitrary differential operator of infinite order in the space of formal Laurent series and describe translation invariant operators in this space. Using the p-adic topology in the ring of integers, we show that any differential operator of infinite order with integer coefficients is well defined as an operator from [[z]] to p[[z]].

Авторлар туралы

S. Gefter

Karazin Kharkiv National University

Хат алмасуға жауапты Автор.
Email: gefter@univer.kharkov.ua
Украина, 4, pl. Svobody, Kharkiv, 61000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019