Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We obtain the sufficient conditions of boundedness of L-index in joint variables for analytic functions in the unit ball, where \( L:{\mathbb{C}}^n\to {\mathbb{R}}_{+}^n \) is a continuous positive vector-function. They give an stimate of the maximum modulus of an analytic function by its minimum modulus on a skeleton in a polydisc and describe the behavior of all partial logarithmic derivatives outside some exceptional set and the distribution of zeros. The deduced results are also new for analytic functions in the unit disc of bounded index and l-index. They generalize known results by G. H. Fricke, M. M. Sheremeta, A. D. Kuzyk, and V. O. Kushnir.

Авторлар туралы

Andriy Bandura

Ivano-Frankivsk National Technical University of Oil and Gas

Хат алмасуға жауапты Автор.
Email: andriykopanytsia@gmail.com
Украина, Ivano-Frankivsk

Oleh Skaskiv

Ivan Franko National University of Lviv

Email: andriykopanytsia@gmail.com
Украина, Lviv

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019