A Comparative Study of Robust and Stable Estimates of Multivariate Location


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This work is concerned with the comparative analysis of a variety of robust estimates of location under the generalized Gaussian and the Student t- and the Tukey gross-error distributions in the univariate and multivariate cases. The chosen set of estimates comprises the sample mean, sample median, classical robust Maronna, Huber, and Hampel M-estimates, Meshalkin–Shurygin stable M-estimates with redescending score functions, and a low-complexity two-step estimate with the preliminary rejection of outliers by the Tukey boxplot rule followed by the use of the sample mean to the cleaned data — almost all of them are examined in the univariate and multivariate versions. The estimate performance is evaluated by efficiency, bias, and mean squared error. For univariate distributions with light and heavy tails, the best results are exhibited by the Huber, Hampel, and Meshalkin–Shurygin and two-step estimates of location. In the multivariate case, the Huber and two-step estimates perform best.

Авторлар туралы

G. Shevlyakov

Peter the Great St. Petersburg Polytechnic University

Хат алмасуға жауапты Автор.
Email: georgy.shevlyakov@phmf.spbstu.ru
Ресей, St. Petersburg

A.A. Shagal

EPAM, St. Petersburg Branch

Email: georgy.shevlyakov@phmf.spbstu.ru
Ресей, St. Petersburg

V. Shin

Gyeongsang National University

Email: georgy.shevlyakov@phmf.spbstu.ru
Корей Республикасы, Chinju

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019