On Functions Bounded by Karamata Functions
- Авторлар: Cadena M.1, Kratz M.2, Omey E.3
-
Мекемелер:
- Universidad de las Fuerzas Armadas, DECE
- ESSEC Business School, CREAR
- KU Leuven at Campus Brussels
- Шығарылым: Том 237, № 5 (2019)
- Беттер: 621-630
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242411
- DOI: https://doi.org/10.1007/s10958-019-04187-z
- ID: 242411
Дәйексөз келтіру
Аннотация
We define a new class of positive and measurable functions that are bounded by regularly varying functions (which were introduced by Karamata). We study integrals and Laplace transforms of these functions. We use the obtained results to study the tail of convolutions of distribution functions. The results are extended to functions that are bounded by O-regularly varying functions.
Авторлар туралы
M. Cadena
Universidad de las Fuerzas Armadas, DECE
Хат алмасуға жауапты Автор.
Email: mncadena2@espe.edu.ec
Эквадор, Sangolqui
M. Kratz
ESSEC Business School, CREAR
Email: mncadena2@espe.edu.ec
Франция, Cergy-Pontoise
E. Omey
KU Leuven at Campus Brussels
Email: mncadena2@espe.edu.ec
Бельгия, Brussels
Қосымша файлдар
