Primitive and Almost Primitive Elements of Schreier Varieties


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A variety of linear algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free. A system of elements of a free algebra is primitive if there is a complement of this system with respect to a free generating set of the free algebra. An element of a free algebra of a Schreier variety is said to be almost primitive if it is not primitive in the free algebra, but it is a primitive element of any subalgebra that contains it. This survey article is devoted to the study of primitive and almost primitive elements of Schreier varieties.

Авторлар туралы

V. Artamonov

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University

Email: aamikhalev@mail.ru
Ресей, Moscow

A. Klimakov

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University

Email: aamikhalev@mail.ru
Ресей, Moscow

A. Mikhalev

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: aamikhalev@mail.ru
Ресей, Moscow

A. Mikhalev

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University

Email: aamikhalev@mail.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019