On Critical 3-Connected Graphs with Two Vertices of Degree 3. Part I
- Авторлар: Pastor A.V.1
-
Мекемелер:
- St. Petersburg Department of Steklov Institute of Mathematics and Peter the Great St. Petersburg Polytechnic University
- Шығарылым: Том 236, № 5 (2019)
- Беттер: 532-541
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242262
- DOI: https://doi.org/10.1007/s10958-018-4131-3
- ID: 242262
Дәйексөз келтіру
Аннотация
A 3-connected graph G is said to be critical if for any vertex υ ∈ V (G) the graph G − υ is not 3-connected. Entringer and Slater proved that any critical 3-connected graph contains at least two vertices of degree 3. In this paper, a classification of critical 3-connected graphs with two vertices of degree 3 is given in the case where these vertices are adjacent. The case of nonadjacent vertices of degree 3 will be studied in the second part of the paper, which will be published later.
Авторлар туралы
A. Pastor
St. Petersburg Department of Steklov Institute of Mathematics and Peter the Great St. Petersburg Polytechnic University
Хат алмасуға жауапты Автор.
Email: pastor@pdmi.ras.ru
Ресей, St. Petersburg
Қосымша файлдар
