The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a second order elliptic operator with variable coefficients in a multidimensional domain with a small hole and some classical boundary condition on the hole boundary. We show that the resolvent of this operator converges to the resolvent of the limit operator in the domain without holes in the sense of the norm of bounded operators acting from L2 to \( {W}_2^1 \). For the convergence rate we obtain sharp estimates relative to the smallness order.

Авторлар туралы

D. Borisov

Institute of Mathematics, USC RAS; Bashkir State Pedagogical University; University of Hradec Králové

Хат алмасуға жауапты Автор.
Email: borisovdi@yandex.ru
Ресей, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003

A. Mukhametrakhimova

Bashkir State Pedagogical University

Email: borisovdi@yandex.ru
Ресей, 3a, October Revolution St., Ufa, 450000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018