An Upper Bound on the Number of Edges of a Graph Whose kth Power Has a Connected Complement


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We say that a graph is k-wide if for any partition of its vertex set into two subsets, one can choose vertices at distance at least k in these subsets (i.e., the complement of the kth power of this graph is connected). We say that a graph is k-mono-wide if for any partition of its vertex set into two subsets, one can choose vertices at distance exactly k in these subsets.

We prove that the complement of a 3-wide graph on n vertices has at least 3n − 7 edges, and the complement of a 3-mono-wide graph on n vertices has at least 3n − 8 edges. We construct infinite series of graphs for which these bounds are attained.

We also prove an asymptotically tight bound for the case k ≥ 4: the complement of a k-wide graph contains at least (n − 2k)(2k − 4[log2k] − 1) edges.

Авторлар туралы

V. Samoilov

St.Petersburg State University

Хат алмасуға жауапты Автор.
Email: sammarize@gmail.com
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018