Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate
- Авторлар: Zaikin A.A.1
-
Мекемелер:
- Kazan Federal University
- Шығарылым: Том 229, № 6 (2018)
- Беттер: 678-697
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240512
- DOI: https://doi.org/10.1007/s10958-018-3707-2
- ID: 240512
Дәйексөз келтіру
Аннотация
The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.
Авторлар туралы
A. Zaikin
Kazan Federal University
Хат алмасуға жауапты Автор.
Email: kaskrin@gmail.com
Ресей, Kazan
Қосымша файлдар
