The Mallows Measures on the Hyperoctahedral Group


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Mallows measures on the symmetric group Sn form a deformation of the uniform distribution. These measures are commonly used in mathematical statistics, and in recent years they found applications in other areas of mathematics as well.

As shown by Gnedin and Olshanski, there exists an analog of the Mallows measures on the infinite symmetric group. These new measures are diffuse, and they are quasi-invariant with respect to the two-sided action of a countable dense subgroup.

The purpose of the present note is to extend the Gnedin–Olshanski construction to the infinite hyperoctahedral group. Along the way, we obtain some results for the Mallows measures on finite hyperoctahedral groups, which may be of independent interest.

Авторлар туралы

S. Korotkikh

National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: shortkih@gmail.com
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2017