On the Generating Function of Discrete Chebyshev Polynomials
- Авторлар: Gogin N.1, Hirvensalo M.1
-
Мекемелер:
- Department of Mathematics and Statistics, University of Turku
- Шығарылым: Том 224, № 2 (2017)
- Беттер: 250-257
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239540
- DOI: https://doi.org/10.1007/s10958-017-3410-8
- ID: 239540
Дәйексөз келтіру
Аннотация
We give a closed form for the generating function of the discrete Chebyshev polynomials. It is the MacWilliams transform of Jacobi polynomials together with a binomial multiplicative factor. It turns out that the desired closed form is a solution to a special case of the Heun differential equation, and that it implies combinatorial identities that appear quite challenging to prove directly.
Авторлар туралы
N. Gogin
Department of Mathematics and Statistics, University of Turku
Хат алмасуға жауапты Автор.
Email: ngiri@list.ru
Финляндия, Turku
M. Hirvensalo
Department of Mathematics and Statistics, University of Turku
Email: ngiri@list.ru
Финляндия, Turku
Қосымша файлдар
