Convolution Equations on a Large Finite Interval with Symbols Having Power-Order Zeros
- Авторлар: Budylin A.M.1, Levin S.B.1
-
Мекемелер:
- St.Petersburg State University
- Шығарылым: Том 224, № 1 (2017)
- Беттер: 54-62
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239479
- DOI: https://doi.org/10.1007/s10958-017-3393-5
- ID: 239479
Дәйексөз келтіру
Аннотация
A certain convolution equation is studied on a large finite interval. This equation arose in acoustics for description of a wave conductor surface with a bed of ice. The main feature of this equation is that the symbol of the corresponding operator has zeros of power order in the dual variable, so that the inverse operator is a long-range one. A complete power-order asymptotic expansion is constructed for the kernel of the inverse operator as the length of the interval tends to infinity.
Авторлар туралы
A. Budylin
St.Petersburg State University
Хат алмасуға жауапты Автор.
Email: a.budylin@spbu.ru
Ресей, St. Petersburg
S. Levin
St.Petersburg State University
Email: a.budylin@spbu.ru
Ресей, St. Petersburg
Қосымша файлдар
