Minimal Spanning Trees on Infinite Sets
- Авторлар: Ivanov A.O.1, Tuzhilin A.A.1
-
Мекемелер:
- Moscow State University
- Шығарылым: Том 223, № 6 (2017)
- Беттер: 711-719
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239429
- DOI: https://doi.org/10.1007/s10958-017-3380-x
- ID: 239429
Дәйексөз келтіру
Аннотация
Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated.
Авторлар туралы
A. Ivanov
Moscow State University
Хат алмасуға жауапты Автор.
Email: aoiva@mech.math.msu.su
Ресей, Moscow
A. Tuzhilin
Moscow State University
Email: aoiva@mech.math.msu.su
Ресей, Moscow
Қосымша файлдар
