Integer Solutions of Matrix Linear Unilateral and Bilateral Equations over Quadratic Rings
- Авторлар: Ladzoryshyn N.B.1
-
Мекемелер:
- Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Шығарылым: Том 223, № 1 (2017)
- Беттер: 50-59
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239292
- DOI: https://doi.org/10.1007/s10958-017-3337-0
- ID: 239292
Дәйексөз келтіру
Аннотация
For matrix linear equations AX + BY = C and AX + YB = C over quadratic rings \( \mathbb{Z}\left[\sqrt{k}\right] \), we establish necessary and sufficient conditions for the existence of integer solutions, i.e., solutions X and Y over the ring of integers \( \mathbb{Z} \). We also present the criteria of uniqueness of the integer solutions of these equations and the method for their construction.
Авторлар туралы
N. Ladzoryshyn
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Email: Jade.Santos@springer.com
Украина, Lviv
Қосымша файлдар
