Closability, Regularity, and Approximation by Graphs for Separable Bilinear Forms


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a countably generated and uniformly closed algebra of bounded functions. We assume that there is a lower semicontinuous, with respect to the supremum norm, quadratic form and that normal contractions operate in a certain sense. Then we prove that a subspace of the effective domain of the quadratic form is naturally isomorphic to a core of a regular Dirichlet form on a locally compact, separable metric space. We also show that any Dirichlet form on a countably generated measure space can be approximated by essentially discrete Dirichlet forms, i.e., energy forms on finite weighted graphs, in the sense of Mosco convergence, i.e., strong resolvent convergence.

Авторлар туралы

M. Hinz

Universität Bielefeld

Хат алмасуға жауапты Автор.
Email: mhinz@math.uni-bielefeld.de
Германия, Bielefeld

A. Teplyaev

University of Connecticut

Email: mhinz@math.uni-bielefeld.de
АҚШ, Storrs

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016