Typical Properties of Leaves of Cartan Foliations with Ehresmann Connection
- Авторлар: Zhukova N.I.1
-
Мекемелер:
- National Research University Higher School of Economics
- Шығарылым: Том 219, № 1 (2016)
- Беттер: 112-124
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238471
- DOI: https://doi.org/10.1007/s10958-016-3087-4
- ID: 238471
Дәйексөз келтіру
Аннотация
We consider a Cartan foliation (M,F) of an arbitrary codimension q admitting an Ehresmann connection such that all leaves of (M,F) are embedded submanifolds of M. We prove that for any foliation (M,F) there exists an open, not necessarily connected, saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced foliation (M0, FM0) is formed by the fibers of a locally trivial fibration with the standard fiber L0 over (possibly, non-Hausdorff) smooth q-dimensional manifold. In the case of codimension 1, the induced foliation on each connected component of the manifold M0 is formed by the fibers of a locally trivial fibration over a circle or over a line.
Авторлар туралы
N. Zhukova
National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: n.i.zhukova@rambler.ru
Ресей, 25/12, Bol’shaya Pechorskaya St., Nizhny Novgorod, 603155
Қосымша файлдар
