Typical Properties of Leaves of Cartan Foliations with Ehresmann Connection


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a Cartan foliation (M,F) of an arbitrary codimension q admitting an Ehresmann connection such that all leaves of (M,F) are embedded submanifolds of M. We prove that for any foliation (M,F) there exists an open, not necessarily connected, saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced foliation (M0, FM0) is formed by the fibers of a locally trivial fibration with the standard fiber L0 over (possibly, non-Hausdorff) smooth q-dimensional manifold. In the case of codimension 1, the induced foliation on each connected component of the manifold M0 is formed by the fibers of a locally trivial fibration over a circle or over a line.

Авторлар туралы

N. Zhukova

National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: n.i.zhukova@rambler.ru
Ресей, 25/12, Bol’shaya Pechorskaya St., Nizhny Novgorod, 603155

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016